Table of Contents

Figure 1. Thermal Ellipsoid Plot of Structure 3
Figure 2. Packing Diagram .. 4
Comments ... 5
Experimental .. 5
Acknowledgements ... 6
References ... 6
Table 1. Crystal Data .. 7
Table 2. Atom Coordinates .. 8
Table 3. Bond Distances and Angles 9
Table 4. Anisotropic Displacement Parameters 11
Table 5. Hydrogen Atom Parameters 12
Table 6. Torsion Angles .. 13
Table 7. Hydrogen Bond Details 14
Comment

The molecule was located on a 2-fold rotation axis. The displacement ellipsoids were drawn at the 50% probability level.

Experimental

A black, block-shaped crystal of dimensions 0.08 x 0.08 x 0.06 mm was selected for structural analysis. Intensity data for this compound were collected using a diffractometer with a Bruker APEX ccd area detector (1) and graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). The sample was cooled to 100(2) K. Cell parameters were determined from a non-linear least squares fit of 5537 peaks in the range 2.68 < θ < 25.52°. A total of 35291 data were measured in the range 2.103 < θ < 25.780° using φ and ω oscillation frames. The data were corrected for absorption by the empirical method (2) giving minimum and maximum transmission factors of 0.786 and 0.833. The data were merged to form a set of 2096 independent data with R(int) = 0.0663 and a coverage of 100.0%.

The orthorhombic space group Pbcn was determined by systematic absences and statistical tests and verified by subsequent refinement. The structure was solved by direct methods and refined by full-matrix least-squares methods on F² (3). The positions of hydrogens were initially determined by geometry and were refined using a riding model. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom displacement parameters were set to 1.2 times the isotropic equivalent displacement parameters of the bonded atoms. A total of 159 parameters were refined against 2096 data to give wR(F²) = 0.0705 and S = 1.001 for weights of w = 1/[σ²(F²) + (0.0400 P)² + 1.9000 P], where P = [F₀² + 2Fc²] / 3. The final R(F) was 0.0262 for the 1671 observed, [F > 4σ(F)], data. The largest shift/s.u. was 0.001 in the final refinement cycle. The final difference map had maxima and minima of 0.367 and -0.422 e/Å³, respectively.
Acknowledgment

The authors thank the National Science Foundation (grant CHE-0130835) and the University of Oklahoma for funds to purchase of the X-ray instrument and computers. This structure was determined by Douglas R. Powell.

References

Table 1. Crystal data and structure refinement for 2015-04-11-02.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{22}H_{16}Cl_2Cu_3N_6O_2</td>
</tr>
<tr>
<td>Formula weight</td>
<td>657.93</td>
</tr>
<tr>
<td>Crystal system</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>Pbcn</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 15.219(4) Å, b = 7.4337(19) Å, c = 19.372(5) Å</td>
</tr>
<tr>
<td>Volume</td>
<td>2191.6(10) Å³</td>
</tr>
<tr>
<td>Z, Z'</td>
<td>4, 0.5</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.994 Mg/m³</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) K</td>
</tr>
<tr>
<td>F(000)</td>
<td>1308</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>3.165 mm⁻¹</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.833 and 0.786</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.103 to 25.780°</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>35291</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>2096 [R(int) = 0.0663]</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>2096 / 0 / 159</td>
</tr>
<tr>
<td>wR(F² all data)</td>
<td>wR² = 0.0705</td>
</tr>
<tr>
<td>R(F obsd data)</td>
<td>R1 = 0.0262</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.001</td>
</tr>
<tr>
<td>Observed data [I > 2σ(I)]</td>
<td>1671</td>
</tr>
<tr>
<td>Largest and mean shift / s.u.</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.367 and -0.422 e/Å³</td>
</tr>
</tbody>
</table>

\[
\text{wR}^2 = \left\{ \frac{\sum [w(F_0^2 - F_c^2)^2]}{\sum [w(F_0^2)^2]} \right\}^{1/2}
\]
\[
R1 = \sum \frac{|F_o| - |F_c|}{\sum |F_o|}
\]
Table 2. Atomic coordinates and equivalent isotropic displacement parameters for 2015-04-11-02. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(1)</td>
<td>0.54002(2)</td>
<td>0.54972(5)</td>
<td>0.69556(2)</td>
<td>0.01519(12)</td>
</tr>
<tr>
<td>Cu(2)</td>
<td>0.5000</td>
<td>0.89892(7)</td>
<td>0.7500</td>
<td>0.02160(15)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>0.54234(5)</td>
<td>0.90492(10)</td>
<td>0.64590(4)</td>
<td>0.02370(18)</td>
</tr>
<tr>
<td>O(1)</td>
<td>0.37370(13)</td>
<td>0.3312(3)</td>
<td>0.55869(10)</td>
<td>0.0226(5)</td>
</tr>
<tr>
<td>N(1)</td>
<td>0.35661(15)</td>
<td>0.5924(3)</td>
<td>0.74884(13)</td>
<td>0.0161(5)</td>
</tr>
<tr>
<td>N(2)</td>
<td>0.43039(15)</td>
<td>0.4803(3)</td>
<td>0.65476(12)</td>
<td>0.0147(5)</td>
</tr>
<tr>
<td>C(1)</td>
<td>0.28383(19)</td>
<td>0.6562(4)</td>
<td>0.78067(15)</td>
<td>0.0173(6)</td>
</tr>
<tr>
<td>C(2)</td>
<td>0.20201(18)</td>
<td>0.6517(4)</td>
<td>0.75160(16)</td>
<td>0.0185(6)</td>
</tr>
<tr>
<td>C(3)</td>
<td>0.1951(2)</td>
<td>0.5867(4)</td>
<td>0.68398(16)</td>
<td>0.0201(7)</td>
</tr>
<tr>
<td>C(4)</td>
<td>0.26892(18)</td>
<td>0.5323(4)</td>
<td>0.64934(15)</td>
<td>0.0181(6)</td>
</tr>
<tr>
<td>C(5)</td>
<td>0.35077(19)</td>
<td>0.5338(4)</td>
<td>0.68283(15)</td>
<td>0.0158(6)</td>
</tr>
<tr>
<td>C(6)</td>
<td>0.43496(19)</td>
<td>0.3877(4)</td>
<td>0.59395(15)</td>
<td>0.0175(6)</td>
</tr>
<tr>
<td>C(7)</td>
<td>0.52792(19)</td>
<td>0.3516(4)</td>
<td>0.57064(15)</td>
<td>0.0175(6)</td>
</tr>
<tr>
<td>C(8)</td>
<td>0.5420(2)</td>
<td>0.2486(4)</td>
<td>0.51227(15)</td>
<td>0.0220(7)</td>
</tr>
<tr>
<td>C(9)</td>
<td>0.6273(2)</td>
<td>0.2163(4)</td>
<td>0.49191(16)</td>
<td>0.0246(7)</td>
</tr>
<tr>
<td>C(10)</td>
<td>0.6961(2)</td>
<td>0.2906(4)</td>
<td>0.52951(15)</td>
<td>0.0234(7)</td>
</tr>
<tr>
<td>C(11)</td>
<td>0.6759(2)</td>
<td>0.3932(4)</td>
<td>0.58693(15)</td>
<td>0.0193(6)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for 2015-04-11-02.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(1)-N(2)</td>
<td>1.917(2)</td>
<td></td>
</tr>
<tr>
<td>Cu(1)-N(1)#1</td>
<td>1.933(2)</td>
<td>1.400(4)</td>
</tr>
<tr>
<td>Cu(1)-N(3)</td>
<td>2.098(2)</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cu(1)-Cu(1)#1</td>
<td>2.4356(8)</td>
<td>1.369(4)</td>
</tr>
<tr>
<td>Cu(1)-Cu(2)</td>
<td>2.8673(8)</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cu(2)-Cl(1)</td>
<td>2.1176(9)</td>
<td>1.405(4)</td>
</tr>
<tr>
<td>Cu(2)-Cl(1)#1</td>
<td>2.1176(9)</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cu(2)-Cu(1)#1</td>
<td>2.8673(8)</td>
<td>1.509(4)</td>
</tr>
<tr>
<td>O(1)-C(6)</td>
<td>1.230(4)</td>
<td>1.382(4)</td>
</tr>
<tr>
<td>N(1)-C(5)</td>
<td>1.354(4)</td>
<td>1.378(4)</td>
</tr>
<tr>
<td>N(1)-C(1)</td>
<td>1.353(4)</td>
<td>0.9500</td>
</tr>
<tr>
<td>N(1)-Cu(1)#1</td>
<td>1.933(2)</td>
<td>1.389(5)</td>
</tr>
<tr>
<td>N(2)-C(6)</td>
<td>1.366(4)</td>
<td>0.9500</td>
</tr>
<tr>
<td>N(2)-C(5)</td>
<td>1.387(4)</td>
<td>1.383(4)</td>
</tr>
<tr>
<td>N(3)-C(11)</td>
<td>1.342(4)</td>
<td>0.9500</td>
</tr>
<tr>
<td>N(3)-C(7)</td>
<td>1.346(4)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.367(4)</td>
<td></td>
</tr>
<tr>
<td>N(2)-Cu(1)-N(1)#1</td>
<td>169.23(10)</td>
<td>C(7)-N(3)-Cu(1) 109.10(19)</td>
</tr>
<tr>
<td>N(2)-Cu(1)-N(3)</td>
<td>83.35(10)</td>
<td>N(1)-C(1)-C(2) 123.3(3)</td>
</tr>
<tr>
<td>N(1)-Cu(1)-N(3)</td>
<td>102.02(10)</td>
<td>N(1)-C(1)-H(1) 118.4</td>
</tr>
<tr>
<td>N(2)-Cu(1)-Cu(1)#1</td>
<td>85.51(7)</td>
<td>C(2)-C(1)-H(1) 118.4</td>
</tr>
<tr>
<td>N(1)-Cu(1)-Cu(1)#1</td>
<td>85.67(8)</td>
<td>C(1)-C(2)-C(3) 117.5(3)</td>
</tr>
<tr>
<td>N(3)-Cu(1)-Cu(1)#1</td>
<td>153.33(6)</td>
<td>C(1)-C(2)-H(2) 121.2</td>
</tr>
<tr>
<td>N(2)-Cu(1)-Cu(2)</td>
<td>102.16(7)</td>
<td>C(3)-C(2)-H(2) 121.2</td>
</tr>
<tr>
<td>N(1)-Cu(1)-Cu(2)</td>
<td>79.59(7)</td>
<td>C(4)-C(3)-C(2) 120.0(3)</td>
</tr>
<tr>
<td>N(3)-Cu(1)-Cu(2)</td>
<td>141.35(6)</td>
<td>C(4)-C(3)-H(3) 120.0</td>
</tr>
<tr>
<td>Cu(1)-Cu(1)-Cu(2)</td>
<td>64.86(11)</td>
<td>C(2)-C(3)-H(3) 120.0</td>
</tr>
<tr>
<td>Cl(1)-Cu(2)-Cl(1)#1</td>
<td>177.59(5)</td>
<td>C(3)-C(4)-C(5) 119.9(3)</td>
</tr>
<tr>
<td>Cl(1)-Cu(2)-Cu(1)</td>
<td>66.68(2)</td>
<td>C(3)-C(4)-H(4) 120.1</td>
</tr>
<tr>
<td>Cl(1)-Cu(2)-Cu(1)#1</td>
<td>115.72(3)</td>
<td>C(5)-C(4)-H(4) 120.1</td>
</tr>
<tr>
<td>Cl(1)-Cu(2)-Cu(1)!1</td>
<td>66.68(2)</td>
<td>N(1)-C(5)-C(4) 119.8(3)</td>
</tr>
<tr>
<td>Cu(1)-Cu(2)-Cu(1)#1</td>
<td>50.27(2)</td>
<td>N(2)-C(5)-C(4) 126.3(3)</td>
</tr>
<tr>
<td>C(5)-N(1)-C(1)</td>
<td>119.3(2)</td>
<td>O(1)-C(6)-N(2) 127.8(3)</td>
</tr>
<tr>
<td>C(5)-N(1)-Cu(1)#1</td>
<td>121.80(19)</td>
<td>O(1)-C(6)-C(7) 118.9(3)</td>
</tr>
<tr>
<td>C(1)-N(1)-Cu(1)#1</td>
<td>118.0(2)</td>
<td>N(2)-C(6)-C(7) 113.3(2)</td>
</tr>
<tr>
<td>C(6)-N(2)-C(5)</td>
<td>121.8(2)</td>
<td>N(3)-C(7)-C(8) 123.3(3)</td>
</tr>
<tr>
<td>C(6)-N(2)-Cu(1)</td>
<td>116.55(19)</td>
<td>N(3)-C(7)-C(6) 117.5(3)</td>
</tr>
<tr>
<td>C(5)-N(2)-Cu(1)</td>
<td>121.44(19)</td>
<td>C(8)-C(7)-C(6) 119.3(3)</td>
</tr>
<tr>
<td>C(11)-N(3)-C(7)</td>
<td>117.3(3)</td>
<td>C(9)-C(8)-C(7) 118.5(3)</td>
</tr>
<tr>
<td>C(11)-N(3)-Cu(1)</td>
<td>133.3(2)</td>
<td>C(9)-C(8)-H(8) 120.7</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle</td>
<td>Bond</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>C(7)-C(8)-H(8)</td>
<td>120.7</td>
<td>C(11)-C(10)-H(10)</td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)</td>
<td>119.3(3)</td>
<td>C(9)-C(10)-H(10)</td>
</tr>
<tr>
<td>C(8)-C(9)-H(9)</td>
<td>120.3</td>
<td>N(3)-C(11)-C(10)</td>
</tr>
<tr>
<td>C(10)-C(9)-H(9)</td>
<td>120.3</td>
<td>N(3)-C(11)-H(11)</td>
</tr>
<tr>
<td>C(11)-C(10)-C(9)</td>
<td>118.3(3)</td>
<td>C(10)-C(11)-H(11)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 -x+1, y, -z+3/2
Table 4. Anisotropic displacement parameters (Å$^2 \times 10^3$) for 2015-04-11-02. The anisotropic displacement factor exponent takes the form:

$-2 \pi^2 [h^2 a^* a^* U_{11} + \ldots + 2 h k a^* b^* U_{12}]$

<table>
<thead>
<tr>
<th></th>
<th>U$_{11}$</th>
<th>U$_{22}$</th>
<th>U$_{33}$</th>
<th>U$_{23}$</th>
<th>U$_{13}$</th>
<th>U$_{12}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(1)</td>
<td>15(1)</td>
<td>18(1)</td>
<td>12(1)</td>
<td>-1(1)</td>
<td>0(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>Cu(2)</td>
<td>27(1)</td>
<td>20(1)</td>
<td>18(1)</td>
<td>0</td>
<td>-3(1)</td>
<td>0</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>30(1)</td>
<td>24(1)</td>
<td>18(1)</td>
<td>1(1)</td>
<td>-4(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>23(1)</td>
<td>28(1)</td>
<td>17(1)</td>
<td>-5(1)</td>
<td>-3(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>17(1)</td>
<td>16(1)</td>
<td>14(1)</td>
<td>-2(1)</td>
<td>1(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>16(1)</td>
<td>16(1)</td>
<td>13(1)</td>
<td>0(1)</td>
<td>0(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>N(3)</td>
<td>20(1)</td>
<td>17(1)</td>
<td>15(1)</td>
<td>1(1)</td>
<td>-1(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>21(2)</td>
<td>17(1)</td>
<td>14(2)</td>
<td>1(1)</td>
<td>2(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>17(2)</td>
<td>16(2)</td>
<td>22(2)</td>
<td>2(1)</td>
<td>3(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>19(2)</td>
<td>16(2)</td>
<td>25(2)</td>
<td>5(1)</td>
<td>-2(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>21(2)</td>
<td>17(1)</td>
<td>17(2)</td>
<td>2(1)</td>
<td>-2(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>21(2)</td>
<td>11(1)</td>
<td>16(2)</td>
<td>4(1)</td>
<td>3(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>23(2)</td>
<td>16(1)</td>
<td>13(2)</td>
<td>5(1)</td>
<td>0(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>25(2)</td>
<td>14(1)</td>
<td>14(2)</td>
<td>4(1)</td>
<td>0(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>29(2)</td>
<td>22(2)</td>
<td>15(2)</td>
<td>-2(1)</td>
<td>0(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>33(2)</td>
<td>25(2)</td>
<td>15(2)</td>
<td>-1(1)</td>
<td>4(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>26(2)</td>
<td>24(2)</td>
<td>21(2)</td>
<td>5(1)</td>
<td>6(1)</td>
<td>9(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>20(2)</td>
<td>22(2)</td>
<td>16(2)</td>
<td>4(1)</td>
<td>1(1)</td>
<td>3(1)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates and isotropic displacement parameters for 2015-04-11-02.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1)</td>
<td>0.2899</td>
<td>0.7067</td>
<td>0.8255</td>
<td>0.021</td>
</tr>
<tr>
<td>H(2)</td>
<td>0.1517</td>
<td>0.6911</td>
<td>0.7764</td>
<td>0.022</td>
</tr>
<tr>
<td>H(3)</td>
<td>0.1393</td>
<td>0.5805</td>
<td>0.6621</td>
<td>0.024</td>
</tr>
<tr>
<td>H(4)</td>
<td>0.2647</td>
<td>0.4936</td>
<td>0.6027</td>
<td>0.022</td>
</tr>
<tr>
<td>H(8)</td>
<td>0.4940</td>
<td>0.2012</td>
<td>0.4868</td>
<td>0.026</td>
</tr>
<tr>
<td>H(9)</td>
<td>0.6390</td>
<td>0.1439</td>
<td>0.4526</td>
<td>0.029</td>
</tr>
<tr>
<td>H(10)</td>
<td>0.7554</td>
<td>0.2714</td>
<td>0.5161</td>
<td>0.028</td>
</tr>
<tr>
<td>H(11)</td>
<td>0.7229</td>
<td>0.4441</td>
<td>0.6127</td>
<td>0.023</td>
</tr>
</tbody>
</table>
Table 6. Torsion angles [°] for 2015-04-11-02.

<table>
<thead>
<tr>
<th>Torsion Angle</th>
<th>Torsion Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(5)-N(1)-C(1)-C(2)</td>
<td>5.5(4)</td>
</tr>
<tr>
<td>Cu(1)#1-N(1)-C(1)-C(2)</td>
<td>-163.9(2)</td>
</tr>
<tr>
<td>N(1)-C(1)-C(2)-C(3)</td>
<td>-3.7(4)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-C(4)</td>
<td>-0.6(4)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-C(5)</td>
<td>3.0(4)</td>
</tr>
<tr>
<td>C(1)-N(1)-C(5)-N(2)</td>
<td>176.9(2)</td>
</tr>
<tr>
<td>Cu(1)#1-N(1)-C(5)-N(2)</td>
<td>-14.1(3)</td>
</tr>
<tr>
<td>C(1)-N(1)-C(5)-C(4)</td>
<td>-2.8(4)</td>
</tr>
<tr>
<td>Cu(1)#1-N(1)-C(5)-C(4)</td>
<td>166.2(2)</td>
</tr>
<tr>
<td>C(6)-N(2)-C(5)-N(1)</td>
<td>167.9(2)</td>
</tr>
<tr>
<td>Cu(1)-N(2)-C(5)-N(1)</td>
<td>-17.3(3)</td>
</tr>
<tr>
<td>C(6)-N(2)-C(5)-C(4)</td>
<td>-12.4(4)</td>
</tr>
<tr>
<td>Cu(1)-N(2)-C(5)-C(4)</td>
<td>162.5(2)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)-N(1)</td>
<td>-1.3(4)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)-N(2)</td>
<td>179.0(3)</td>
</tr>
<tr>
<td>C(5)-N(2)-C(6)-O(1)</td>
<td>-4.5(5)</td>
</tr>
<tr>
<td>Cu(1)-N(2)-C(6)-O(1)</td>
<td>-179.5(2)</td>
</tr>
<tr>
<td>C(5)-N(2)-C(6)-C(7)</td>
<td>176.8(2)</td>
</tr>
<tr>
<td>Cu(1)-N(2)-C(6)-C(7)</td>
<td>1.7(3)</td>
</tr>
<tr>
<td>C(11)-N(3)-C(7)-C(8)</td>
<td>-0.4(4)</td>
</tr>
<tr>
<td>Cu(1)-N(3)-C(7)-C(8)</td>
<td>-175.4(2)</td>
</tr>
<tr>
<td>C(11)-N(3)-C(7)-C(6)</td>
<td>-179.6(2)</td>
</tr>
<tr>
<td>Cu(1)-N(3)-C(7)-C(6)</td>
<td>5.5(3)</td>
</tr>
<tr>
<td>O(1)-C(6)-C(7)-N(3)</td>
<td>176.0(3)</td>
</tr>
<tr>
<td>N(2)-C(6)-C(7)-N(3)</td>
<td>-5.1(4)</td>
</tr>
<tr>
<td>O(1)-C(6)-C(7)-C(8)</td>
<td>-3.2(4)</td>
</tr>
<tr>
<td>N(2)-C(6)-C(7)-C(8)</td>
<td>175.7(3)</td>
</tr>
<tr>
<td>N(3)-C(7)-C(8)-C(9)</td>
<td>1.2(4)</td>
</tr>
<tr>
<td>C(6)-C(7)-C(8)-C(9)</td>
<td>-179.7(3)</td>
</tr>
<tr>
<td>C(7)-C(8)-C(9)-C(10)</td>
<td>-1.3(4)</td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)-C(11)</td>
<td>0.8(4)</td>
</tr>
<tr>
<td>C(7)-N(3)-C(11)-C(10)</td>
<td>-0.1(4)</td>
</tr>
<tr>
<td>Cu(1)-N(3)-C(11)-C(10)</td>
<td>173.3(2)</td>
</tr>
<tr>
<td>C(9)-C(10)-C(11)-N(3)</td>
<td>0.0(4)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 -x+1, y, -z+3/2
Table 7. Hydrogen bonds for 2015-04-11-02[Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(4)-H(4)...O(1)</td>
<td>0.95</td>
<td>2.22</td>
<td>2.804(4)</td>
<td>118.7</td>
</tr>
<tr>
<td>C(8)-H(8)...Cl(1)#2</td>
<td>0.95</td>
<td>2.74</td>
<td>3.513(3)</td>
<td>138.5</td>
</tr>
<tr>
<td>C(10)-H(10)...O(1)#3</td>
<td>0.95</td>
<td>2.43</td>
<td>3.324(4)</td>
<td>155.9</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#2 -x+1, -y+1, -z+1 #3 x+1/2, -y+1/2, -z+1